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FIXED POINTS AND TORSION ON KAHLER MANIFOLDS!

BY THEODORE FRANKEL
(Received March 18, 1958)

1. Introduction and an example

When a 1-parameter group acts by isometries on a Riemannian manifold
M, the fixed point set F' is nicely behaved. It isknown that each compo-
nent F, of F'is a totally geodesic submanifold of M whose dimension has
the same parity as the dimension of M (see e.g., S. Kobayashi, Fired
points of isometries, Nagoya Math J., 13 (1958), 63-68). When M is
compact Kihler theisometries are holomorphic transformations and the
F, are compact Kéhler submanifolds (which may reduce to points); in
particular, as cycles, these components cannot bound in M. This paper is
mainly concerned with the structure of the fixed point set in this Kéhlerian
case; however, the use of the complex structure is mainly for convenience;
our results also hold for the special type of symplectic manifold in which
the fundamental exterior 2-form is harmonie.

As has been pointed out to us by several people, our situation is equiva-
lent to having a toral group acting complex analytically on a compact
Kihler M.

Bott [2] has given some important results on the homology of certain
homogeneous spaces and the loop space to a group. Our main results, the
theorem and corollaries of § 4 can be considered as direct generalizations
of the former (see Corollary 3). Our method yields, at the same time, new
proofs of his results.

Our proofs are simple applications of another phase of Bott’s work,
namely his extension of the Morse theory of critical points to functions
with ‘‘non-degenerate critical manifolds’’ [3].

The following simple example illustrates the method. Let S, be the
2-sphere and let @, be the 1-parameter group of rotations of S, about the
z axis. The fixed (or stationary) set F' of ®, consists of the north and
south poles, i.e., the places where the velocity vector X vanishes. Now

S, is a Riemann surface; it has an operator J (multiplication by (—1)%)
that sends any tangent vector into a tangent vector orthogonal to it. The
resulting vector field JX gives a flow going from the south pole to the
north pole. In fact, JX = grad ¢, where ¢ is a function whose level curves
are the circles of latitude and whose critical points consist of a minimum

1 This research was supported by the United States Air Force through the Air Force
Office of Scientific Research.
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2 THEODORE FRANKEL

at the south pole and a maximum at the north pole. We note the important
fact that the critical set of ¢ coincides with the fixed set of original group
®,. The Morse inequalities then allow us to read off the Betti numbers of
S, in terms of the fixed set F. In the present paper we show that this
situation arises under rather general circumstances.

2. Hypotheses and notation

For all our results the following hypotheses and notation are used without
further mention:

(1) M is compact, connected, Kihler with real dimension n = 2k.

(2) @ is a connected 1-parameter group of isometries of M. Asmen-
tioned in the introduction (2) is equivalent to

(2') @ is a toral group acting complex analytically on M. By the usual
averaging process ¥’ can be made to act by isometries. One can then
extract a 1-parameter group ® that lies dense on @ and we are in situa-
tion (2) again. This process is reversible since the group of isometries of
M is compact.

The fixed point set F of ® on M is the set of points of M left fixed by
all the transformations of ®. In the case (2') the fixed set of @' coincides
with the fixed set of ®. The components of F' are denoted by F}, -+ «,Fy.
Each F, is a compact Kihler submanifold of M.

b,(A) denotes the i** Betti number for rational coefficients of the space
A, while b,(4; K) denotes the i*" Betti number for the coefficient field K.

3. The principal lemmas

LEMMA 1. If b(M) = 0, the fized set F coincides with the non-degener-
ate critical set of a real C= function ¢ on M.

PrOOF. It is known that the group ® acts complex analytically on M.
Let X be the velocity vector field of the flow on M caused by ® (since P
acts by isometries, X is a Killing field). 6(X), ¥(X) and d will denote the
operations of Lie derivation, interior product (contraction), and exterior
derivation respectively, see [5]. These operators, which act on exterior
differential forms, are related by the identity

0(X) = i(X)d + di(X) .

We shall apply this identity to the Kéhler 2-form w of M. Since M is
Kahler dw = 0; in fact @ is harmonic. Harmonic forms are invariant

2 The function in question has arisen in the work of Y. Matsushima, [‘‘Sur la structure
du groupe d’homeomorphismes analytiques d’une certaine variete kaehlerienne’’, Nagoya
Math. J., 11 (1957), 145-50] as we learned after submitting this paper.
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under connected groups of isometries and so 8(X)w = 0, see [11, page 49],
hence we may conclude that di(X)w = 0; i.e., i(X)w is a closed 1-form.
Since b,(M) = 0 we may integrate this 1-form to get a C= function ¢ on
M such that

(1) d¢ = i(X)w .

As we are actually using only the real structure of M, ¢ can be taken as
real valued.

In terms of real local coordinates X = X'9/0x' and @ = w,, da* A dx’;
then i(X)w = w,, X' dx'. The critical points of ¢ are where d¢ = 0, i.e.,
where i(X)w = 0. Since w is a non-degenerate 2-form, det (w,;) # 0 and
so the critical points of ¢ are precisely the points where X vanishes, i.e.,
the points fixed under the group ®.

The degeneracy of a critical point is determined by the Hessian matrix

A of second partial derivatives of ¢ at the critical point. We have shown
in (1) that

% = w“Xl
ox,
and so
%P 0X?
2 ﬂ[ = = W
(2) Y 0x,0x; " 0w,

at a critical point (i.e., where X = 0).

Let p be a critical point of ¢. p lies on a compact Kihler submanifold
F(p) of critical points (we consider an isolated point as a Kihler submani-
fold). Let realdim F(p) = 2r, » = 0. Let T, be the tangent space to M
at p and let &, be the subspace of T, tangent to F(p).

Since @ leaves p fixed and operates by isometries it induces a 1-parameter
group @, of rotations of T',. Let S be the infinitesimal generator of ®,,
i.e., ®.(t) = exptS.

Consider the linear transformation R: T, — T, defined by sending the

vector ¥ = Y‘i at p into the vector Q—‘XZ—YJL. Extend Y toa vector
ox’ ox’ ox

field, also called Y, in a neighborhood of p. Then since X vanishes at p,
we have
0X'y, _ 0X'y, oY
ox’ ox’ ox’

at p. Thus R(Y) =[Y, X]. But, see [9]

X/

[Y, X] = lim,_, %{(I)*(t) 1Y =S8Y
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and so R(Y) = SY. In terms of matrices then 4, = w,,S! and in terms
of linear transformations 4% = w!S%. With abuse of notation we may
write this as

(3) I =JS

where J is the complex structure tensor J! = wi and J? = — 1.

The statement 6(X)w = 0 implies JS = SJ (X preserves the complex
structure). Thus J and S can be brought to canonical form simultaneous-
ly. This means that we can find 2-planes ¢,, - --, ¢,_, at p, each invariant
under J and S, such that T, = ¢, Pe.P --- Pe,-. P h, is an invariant
orthogonal decomposition. Since S is the infinitesimal generator of a
1-parameter subgroup @, of the rotation group operating on 7', we have
the 2k by 2k matrices

6,

_ O,
S=1p 0

0

where V = (‘1) _(1)> and O, = (2 _gi>. 0, represents the angular
[3

velocity of the plane ¢;, the orientation being determined by J. For the
Hessian we then have from (3)

(4) H = diag (—0,, —0,, =+, =04y, —0;,, 0, -+-,0)

The nullity of 4(is then 27, i.e., the nullity of 4 is precisely the dimension
of the critical manifold F'(p).” In the terminology of Bott [3], Fi(p) is a
non-degenerate critical manifold of ¢. This concludes the proof of the
lemma.

COROLLARY. If b,(M) = 0 and if ® is not the identity, then the fixed
set F' is not empty and not connected.

PRrOOF. Since ¢ is not constant it has unequal maximum and minimum,
A and B respectively. The disjoint level sets ¢ = A and ¢ = B contain
therefore two components of F'

LEMMA 2. In Lemma 1 we may replace the requirement b, (M) = 0 by
the requirement that F' be non empty.

3 All 0;, 1 < i<k — r are non-zero; for if some 6; were zero the plane ¢; would be fixed
at T, and so the geodesic surface through e; would also be fixed.
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PrOOF. For the concepts and notation of harmonic forms used in this
lemma see [10] and the recent book of A. Weil, ‘‘Introduction & I'étude
des variétés kaehlériennes,”’ Hermann, 1958. C is the complex structure
operator applied to forms.

From the Hodge decomposition theorem we have i(X)w = H[i(X)w] +
d¢ for some function ¢; here H denotes the harmonic part. Hence we
need only show H[¢(X)w] = 0.

Let y = X,dx* be the ‘“‘covariant’’ form for X. From the last part of
Theorem 1 of [6] we see that H[)] = 0; however for completeness we
sketch the proof of this statement here. Let % be any harmonic 1-form.
Then from the identity 6(X)h = i(X)dh + di(X)h we again conclude that
di(X)h = 0, i.e., i(X)h = constant (Bochner’s theorem). Since by
hypothesis X vanishes somewhere this constant must be 0. Hence (3, k) =
§x *1(X)h = 0, and so H[x] = 0.

The proof of our lemma is concluded by the following observation, for
which we gratefully thank S. Kobayashi. i(X)w = Cyx, hence H[i(X)w] =
H[Cy] = CH[x] = 0.

4. Applications of the critical point theory

The index of a critical manifold F,, denoted by ),, is the number of
negative eigenvalues of the Hessian. From (4) we see that in our case )\,
is always even. In Morse’s terminology [8] the odd type numbers vanish
(for the isolated critical point case).

THEOREM. If F is non-empty, then
b(M; K) =33 by, (Fa; K)

Sfor all © and for coefficient field K either the rationals Q or the integers
mod p, Z,, p prime.

PrOOF. The procedure follows that in [4] with the modifications required
to discuss critical manifolds rather than isolated critical points. The func-
tion ¢ of our lemmas gives rise to a filtration Q, of the singular chains of
M, the filtration being bounded from below and above. The term E* of
the resulting spectral sequence is given by E}, = H,,(Q,, Q,-;; K) and
Theorem 1 of [3] essentially evaluates ,E* = E,, Hy(Q,, Q,-;; K)as follows

dim ,E* = Ew dim H,_, (F.; K) .

We are permitted to use any coefficient field K, rather than only Z, as in
[3] because in our situation the bundles used in [3] are orientable. That
is, the ‘‘negative normal bundle’’ (the sub-bundle of the normal bundle
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of F, corresponding to the negative eigenspaces of the Hessian A) has

complex linear subspaces as fibers. This results easily from HT = JH

which in turn follows immediately from (3) and JS = SJ. Since a complex

subspace has a natural orientation the bundles in question are orientable.
The Morse-Bott inequalities

b(M; K) < 3, b (Fu; K)

then follow from dim ,E' = dim ,E~ = dim H,(M; K).
On the other hand some work of Floyd [Trans. Amer. Math. Soc., 72
(1952), 138-147] shows that under very general circumstances

o b(M; K) = 3 b(F; K)

for K= Q or Z,. (See also the recent paper of Conner [Mich. Math. J.,
5 (1958)]). While this last inequality is stated for finite transformation
groups it extends immediately to our toral groups (see § 2) as was pointed
out to us by Floyd.

The two inequalities then give our Theorem.

EXAMPLE. Let M = P,(C) be the complex projective plane with homo-
geneous complex coordinates [z, z,, 2,]. Let the circle group ®, act on M
by [Zo) 21, 251 = [20) €"2,, €''2,]. The fixed set F' consists of the point F, =
[1, 0, 0] and the complex projective line (2-sphere) F, = [0, z,, 2,]. By
changing sign if necessary we can choose ¢ so that F) is the minimum
set and F), is the maximum set; i.e. A, = 0 and \, = 2. The equalities of
the Theorem are easily verified.

COROLLARY 1. If F is non empty, then
1°. F has torsion if and only if M has torsion.
2°. H,(F; Z) =0, all i if and only if Hyi(M; Z) = 0, all @.

PROOF. Absence of torsion is equivalent to having rational Betti
numbers coinciding with mod p Betti numbers for all primes p. 1° then
follows immediately from the Theorem. To prove 2° in one direction we
note that each F, is a compact, orientable manifold of even dimension.
Thus from Poincaré duality H,;..(F,; Z) = 0 implies that F, has no tor-
sion. From 1° we conclude that M has no torsion. Now the indices A,
are all even, hence from the Theorem we conclude that H,.,(M, Z) = 0,
all 7. The implication in the other direction follows similarly.

COROLLARY 2. If the fixed points are isolated then M has mo torston
and its odd dimensional Betti numbers vanish.

COROLLARY 3. (Bott). Let G be a compact semi-simple Lie group, T’
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a toral subgroup and C(T') its centralizer in G. Then G|C(T") has no
torsion and its odd dimensional Betti numbers vanish.

PrOOF. Borel [1] has shown that the spaces G/C(T"’) are precisely the
Kihlerian coset spaces of compact Lie groups, having first Betti number
0. The subgroup C(7") contains a maximal torus 7 of G. It was shown by
Weil, and independently Hopf and Samelson [7] that if one takes a
1-parameter subgroup & of T that lies dense on 7, the resulting flow on
G/C(T") will have isolated fixed points. The flow is isometric with respect
to an invariant Kihler metric. Our conclusion then follows from the
previous corollary.

REMARK. One can also obtain the ‘‘sign’’ formula for the Betti numbers
of G/T, see [4, page 252]. This follows from the fact that the fixed points
of @ lie under the normalisor N(7') of T'in G.

ExaMPLE. This example, which was kindly communicated to us by E.
Calabi, illustrates that Corollary 2 is not contained in Corollary 3. Let
M’ = P,(C) be the complex projective plane and let the circle group @’
act on M’ by [2,, 2, 2] — [7,, €%z, €*'2,]. The fixed set consists of the
three points p, = [1, 0, 0], p, = [0, 1, 0], and p, = [0, 0, 1]. Let M be the
space obtained from M’ by blowing up the point p, into the complex
projective line P,(C) of complex directions at p,(Hopf o-process). Since
p, is fixed under @', the induced group &', rotates P,(C) onto itself. Thus
@’ augmented by ®% on P,(C) gives rise to a 1-parameter group ® of trans-
formations of M. M is still Kéhler and & still operates analytically. The
fixed points on M are the points p, and p, together with the points on
P,(C) left fixed by ®,. The latter are two in number and correspond to
the directions p,p, and p,p, at p,. The space M is not homogeneous.

THE INSTITUTE FOR ADVANCED STUDY
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